The X-ray/UV warm absorber in NGC 7469

(MSSL-UCL)

G. Branduardi-Raymont (MSSL-UCL)

G. A. Kriss (STSCI, CAS-JHU)

E. Behar (Technion)

J. S. Kaastra (SRON)

M. J. Page (MSSL-UCL)

S. M. Kahn (Columbia)

M. Sako (Caltech)

K. C. Steenbrugge (SRON)

• Well-studied Seyfert 1.2 galaxy

- Well-studied Seyfert 1.2 galaxy
- First high-resolution soft X-ray spectrum taken by RGS on XMM-Newton, in December 2000

- Well-studied Seyfert 1.2 galaxy
- First high-resolution soft X-ray spectrum taken by RGS on XMM-Newton, in December 2000
- A UV spectrum was obtained by FUSE a year before

- The combined analysis of the X-ray and UV data has given us an important new insight into the X-ray/UV warm absorber
 - Multiwavelength studies of the Seyfert 1 galaxy NGC7469. I Far UV observations with FUSE G. A. Kriss, A. J. Blustin, G. Branduardi-Raymont, R. F. Green, J. Hutchings and M. E. Kaiser, A&A, in press; astro-ph/0302552
 - Multiwavelength studies of the Seyfert 1 galaxy NGC7469. II X-ray and UV observations with XMM-Newton A. J. Blustin, G. Branduardi-Raymont, E. Behar, J. S. Kaastra, G. A. Kriss, M. J. Page, S. M. Kahn, M. Sako and K. C. Steenbrugge, A&A, in press; astro-ph/0302551
- This talk summarises the results of this project and discusses its future prospects

X-ray and UV variability seen by XMM-Newton

X-ray and UV variability seen by XMM-Newton

0.2-10 keV EPIC-pn spectrum

Narrow iron Ka line

Significance of narrow spectral features

Ionisation level versus blueshift

O VII triplet diagnostics

w = flux of O VII resonance line z = flux of O VII forbidden line (x + y) = flux of O VII intercombination lines $u = flux of O VIII Ly\alpha$ line

Density

$$R = \frac{z}{x + y}$$

Ionisation level

$$X_{ion} = \frac{u}{w}$$

Summary - X-ray warm absorption

NGC 7469 has an outflowing, multi-phase X-ray warm absorber:

- Log ξ = -2 to 2
- Average blueshift $-800 \pm 100 \text{ km s}^{-1}$

Summary - X-ray warm absorption

NGC 7469 has an outflowing, multi-phase X-ray warm absorber:

• Log
$$\xi = -2$$
 to 2

- Average blueshift $-800 \pm 100 \text{ km s}^{-1}$
- High-ionisation phase best constrained:

• Log
$$\xi = 1.6^{+0.7}_{-0.4}$$

• $N_H = (1.5 \pm 0.9) \times 10^{20} \, \text{cm}^{-2}$; low column so no iron absorption observed

Summary - X-ray warm emission

- We identify four narrow emission lines: O VII(f), O VII (i), O VIII Ly α and C VI Ly α
- O VIII Lyα and C VI Lyα have P-Cygni profiles
- O VII(f) has blueshift = -400 ± 200 km s⁻¹ and is unresolved

Summary - X-ray warm emission

- We identify four narrow emission lines: O VII(f), O VII (i), O VIII Ly α and C VI Ly α
- O VIII Lyα and C VI Lyα have P-Cygni profiles
- O VII(f) has blueshift = -400 ± 200 km s ⁻¹ and is unresolved
- Ionisation level of emitter consistent with that of absorber
 - Emitter: $\log \xi = 2.2^{+0.3}_{-0.2}$
 - Absorber: $\log \xi = 1.6^{+0.7}_{-0.4}$
- Density implied by f/i ratio is less than 10^{10} cm⁻³

Summary - UV results from FUSE

Intrinsic UV absorption from two components is observed:

Summary - UV results from FUSE

Intrinsic UV absorption from two components is observed:

UV#1: • blueshift = -569 km s^{-1}

- O VI column $\sim 8 \times 10^{14} \text{ cm}^{-2}$; upper limit 1.5 x 10^{18} cm^{-2}
- covers ~50% of continuum and broad line emission; consistent with coverage of continuum only, may lie interior to broad line gas

Summary - UV results from FUSE

Intrinsic UV absorption from two components is observed:

UV#1: • blueshift = -569 km s^{-1}

- O VI column $\sim 8 \times 10^{14}$ cm⁻²; upper limit 1.5 x 10^{18} cm⁻²
- covers ~50% of continuum and broad line emission; consistent with coverage of continuum only, may lie interior to broad line gas

UV#2: • blueshift = -1898 km s^{-1}

- O VI column $\sim 8 \times 10^{14} \text{ cm}^{-2}$
- covers ~90% of continuum and broad line emission

The X-ray - UV connection

UV#1:

- Has best match for X-ray absorber blueshift
- Using a SED based on the RGS and FUSE spectra, calibrated by the relative X-ray and UV fluxes observed by XMM, Xstar modelling shows that the O VII, O VIII, O VI and HI (from HST-FOS) all correspond to a warm absorber with:
 - Log $\xi = 2.2$, $N_H = 3.5 \times 10^{20} \text{ cm}^{-2}$

The X-ray - UV connection

UV#1:

- Has best match for X-ray absorber blueshift
- Using a SED based on the RGS and FUSE spectra, calibrated by the relative X-ray and UV fluxes observed by XMM, Xstar modelling shows that the O VII, O VIII, O VI and HI (from HST-FOS) all correspond to a warm absorber with:
 - Log $\xi = 2.2$, $N_H = 3.5 \times 10^{20} \text{ cm}^{-2}$

UV#2:

- Blueshift too high to correspond to X-ray absorber
- Total column of absorber is too low for it to be visible in RGS spectrum

Overall model - NGC 7469 warm absorber

Broad emission line region

Central engine

Overall model - NGC 7469 warm absorber

Overall model - NGC 7469 warm absorber

• Need higher signal-to-noise in X-rays

- Need higher signal-to-noise in X-rays
- Need simultaneous UV spectrum

• Need higher signal-to-noise in X-rays

• Need simultaneous UV spectrum

XMM-Newton AO-3 and FUSE Cycle 5 proposals for long simultaneous observations

• Need higher signal-to-noise in X-rays

XMM-Newton AO-3 and FUSE Cycle 5 proposals for long simultaneous observations

For a future X-ray spectroscopy mission:

• this project demonstrates the scientific value of having a co-aligned dedicated UV spectrometer on board